A linear nonconforming finite element method for Maxwell's equations in two dimensions. Part I: Frequency domain
نویسندگان
چکیده
We suggest a linear non-conforming triangular element for Maxwell’s equations and test it in the context of the vector Helmholtz equation for the electric field. The element uses discontinuous normal fields and tangential fields with continuity at the midpoint of the element sides, an approximation related to the Crouzeix-Raviart element for Stokes. The element is stabilized using the jump of the tangential fields, giving us a free parameter to decide. We give dispersion relations for different stability parameters and give some numerical examples, where the results converge quadratically with the mesh size for problems with smooth boundaries. The proposed element is free from spurious solutions and, for cavity eigenvalue problems, the eigenfrequencies that correspond to well-resolved eigenmodes are reproduced with the correct multiplicity.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملSOME n - RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS
Motivated by both theoretical and practical interests, we will consider n-rectangle (n ≥ 2) nonconforming finite elements for n-dimensional fourth order partial equations in this paper. In the two dimensional case, there are well-known nonconforming elements, such as the Morley element, the Zienkiewicz element and the Adini element, etc (see [1-4]). In a recent paper [10], we have discussed the...
متن کاملSuperconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations
In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic field H with the boundary condition E × n = 0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated ...
متن کاملFinite Element Methods for the Simulation of Waves in Composite Saturated Poroviscoelastic Media
This work presents and analyzes a collection of finite element procedures for the simulation of wave propagation in a porous medium composed of two weakly coupled solids saturated by a single-phase fluid. The equations of motion, formulated in the space-frequency domain, include dissipation due to viscous interaction between the fluid and solid phases with a correction factor in the high-freque...
متن کاملHigh-Order Numerical Methods for Maxwell's Equations on Unstructured Meshes
For more than fifteen years, spectral finite elements (i.e. finite element methods on hexahedral meshes with mass-lumping) showed their efficiency to model the propagation of acoustic and elastic waves in the time domain, in particular in terms of accuracy. Moreover, their mixed formulation [1] dramatically increases their efficiency in terms of storage and computational time. This approach, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010